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The scenarios of the breakdown of Poiseuille laminar flow that
have been investigated in most detail began with the linear ampli-
fication of Tollmien-Schlichting waves. The first theoretical results
on the stability of Poiseuille flow were published by Heisenberg,1

who established, by asymptotic methods, the position of one of the
branches of the neutral curve. Subsequent theoretical and experi-
mental investigations, refining Heisenberg’s conclusions, enabled,
in particular, the critical Reynolds number to be determined. The

applicability of the linear theory of hydrodynamic stability for plane
Poiseuille flow was finally confirmed.2,3

A quite different situation arises in attempts to reconcile the the-
oretical and experimental approaches when investigating the role
of different kinds of perturbations for Couette flow. Disagreements
on the reasons for the occurrence of instability in plane Couette
flow arose most clearly in relation to the theoretically predicted
absence of a neutral curve of linear perturbations. It was proved,4,5

that Couette flow remains stable in the linear approximation for
all Reynolds numbers. Nevertheless, the experimentally observed
destabilization of plane Couette flow6,7 makes it necessary to make
a considerable correction to the theoretical models.

Below we construct one of the modifications of perturbation
theory for a combination of Couette and Poiseuille flows. An inter-
esting fact (which is not completely obvious in advance) is the
applicability of multistage asymptotic constructions, introduced
in the theory of free interactions of the boundary layer,8–10 to
describe the loss of stability of viscous flows.11,12 The technique of
asymptotic expansions8–12 enabled excitations of pulsation fields
in Couette–Poiseuille flow,13,14 which in principle does not occur
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description of one of the mechanisms by which fluctuations develop in
at high Reynolds numbers is proposed. The class of wave perturbations
e which obey the linear Korteweg–de Vries equation despite the general
tic structure of the flow field is indicated. The evolution of a localized
into a wave packet is considered.
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in Poiseuille flow, to be explained. An asymptotic analysis confirms
the existence of four types of neutral (or close to neutral) natural
oscillations, which differ in having a different arrangement of the
critical and wall sublayers.

In this paper from the very beginning we take as the initial
equations the Navier–Stokes equations, on the assumption that the
Reynolds numbers are high. Unlike the previous analysis14 we con-
sider a non-linear version of the asymptotic theory, which leads to
the Korteweg–de Vries equation for describing the wave pattern of
the perturbed flow. Note that the stability of Couette flow to non-
linear perturbations is the object of discussions in Refs. 6, 7 and 13

from the point of view of the probable explanation of the transition
to a turbulent state.

1. Formulation of the boundary-value problem

The unperturbed Couette–Poiseuille flow in a channel with
moving walls (Fig. 1) when there is a constant pressure gradient
∂p∗/∂x∗ = −|∂p∗

0/∂x∗| is given by the functions

(1.1)

which satisfy the Navier–Stokes equations

and the boundary conditions
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Fig. 1.

Solving (1.1) we determine the average value of the velocity of
motion of an incompressible fluid

which is uniquely related to the pressure in the channel

It is natural to choose the half-width of the channel b*, the mean
velocity U∗

m over the channel cross-section and the density �* of the
incompressible fluid in order to normalize the coordinates of space
{x*, y*}= {b* x, b*y}, the time t∗ = b∗U∗−1

m , the components of the
velocity vector u∗ = {u∗, v∗} = {U∗

mu, U∗
mv} = U∗

mu and the pressure
p∗ = � ∗ U∗2

m p. In the new variables, the initial stationary solution of
the Navier–Stokes equations

(1.2)

which take the form

(1.3)

and which satisfy the boundary conditions

(1.4)
is determined by the velocities of the channel walls ±uw = ±u∗
wU∗−1

m

and Reynolds number Re = U∗
mb∗�∗−1

, where �* is the kinematic
viscosity.

2. An asymptotic description of the perturbed core of
Couette–Poiseuille flow and the wall layers

We will put Re → ∞ and consider the special class of perturba-
tions

(2.1)

of the exact solution (1.3). The variables

(2.2)

are the arguments of the perturbing functions in (2.1), and hence
not only the amplitude but also the space-time characteristics of
the fluctuations are specified in terms of certain powers of the
ematics and Mechanics 72 (2008) 36–41 37

Reynolds number. The form of the asymptotic sequences (2.1)
reflects the singular nature of the small parameter Re−1 occurring in
the Navier–Stokes Eq. (1.2), from which we have the closed system
of equations in the perturbations

(2.3)

The solutions of Eq. (2.3) are defined, apart from two arbitrary
functions A1(T, X) and P1(T, X)

(2.4)

Representation (2.1) is unsuitable in the neighbourhoods of the
channel walls. In fact, on the boundaries Y = ± 1 of the region occu-
pied by the fluid, the longitudinal velocity

is not the same as the velocities of the moving walls ±uw , since
u0(±1) = ±uw , by virtue of the first equation of (1.3) and

in accordance with the first equation of (2.4)
Moreover, expansions (2.1) for the core of the flow Y = O(1) in

the channel only hold when the conditions of asymptotic matching
hold in the expansions in narrow subregions close to the walls,
where the equations describing the motion have a viscous nature,
unlike Eq. (2.3). We will show that this matching is possible on the
assumption that

(2.5)

In the region of the upper wall 1 − Y = O(Re−2/7) and the lower
wall 1 + Y = O(Re−2/7) of the channel, instead of (2.1) we introduce
the new expansions

(2.6)

The hydrodynamic functions here are indicated by a plus sub-
script for the upper wall sublayer and a minus subscript for the

lower sublayer (Fig. 1), while the new (extended) vertical coordi-
nates Y± = O(1) are defined as follows:

(2.7)

We introduce representations (2.6) into the Navier–Stokes Eq.
(1.2). We then obtain the following two systems of equations for
the functions with plus and minus subscripts

(2.8)

The inner limit (Y± → +∞) of expansions (2.1), written in terms
of the variables Y± serve as the outer boundary conditions (Y → ±1)
(for Eq. (2.8)). From expansions (2.1), taking the solutions (2.4) into
account, we have for Y → ±1

(2.9)
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Changing here to variables (2.7), it can be verified that when the
conditions

(2.10)

are satisfied, functions (2.1) and (2.6) change into one another, i.e.
matching of the asymptotic expansions is obtained in the core of the
perturbed Couette–Poiseuille flow and in the two wall subregions.

The addition of the no-slip boundary conditions for the fluid
particles at the channel walls

(2.11)

closes the problem.
In problem (2.8), (2.10) and (2.11) the two systems of equations

(for the functions with plus and minus subscripts) are not inde-
pendent, since the boundary conditions contain the two unknown
functions P1(T, X) and A1(T, X), common to both systems.

Although Eq. (2.8) are identical in form with Prandtl’s equations,
unlike the classical Prandtl theory the pressure gradient pertains to
a number of the required quantities. The description of the evolu-
tion of the perturbations must therefore be reduced to the problem
of the free interaction of the core of the Couette–Poiseuille flow
with two wall subregions. The latter, in accordance with the termi-
nology used in Refs. 8–10, are boundary layers with self-induced
pressure.

Note that the set of solutions of boundary-value problem
(2.8), (2.10), (2.11) is not empty, as follows from the previously
investigated14 linear approximation – Tollmien-Schlichting waves
(assuming small amplitudes). Below we consider, in a certain sense,
the opposite limiting case of large amplitudes of the pulsation
fields.

3. Locally-non-viscous non-linear perturbations and the
Korteweg–de Vries equation

We will introduce the parameter � and carry out a transforma-
tion of the dependent and independent variables of the following
form
(3.1)

Substituting expressions (3.1) into relations (2.8), (2.10) and
(2.11) we obtain

(3.2)

The last equality in system (3.2), among the set of solutions of
the equation ∂p̂±/∂Ŷ± = 0 distinguishes those the form of which
agrees with the matching procedure on the outer boundaries of
the wall sublayers.

Conversion (3.1) therefore leaves all the relations (2.8), (2.10)
and (2.11) unchanged, with the exception of the first equation of
(2.8) in which, when � → +∞, a small parameter occurs for the lead-
ing derivative (corresponding to viscous shear stresses). Dropping
hematics and Mechanics 72 (2008) 36–41

the term of the order of �−7 in this equation and assuming every-
where henceforth that � → +∞, we obtain the following system of
non-viscous equations

(3.3)

It is easy to check that the expressions

(3.4)

satisfy both the equations of the boundary-value problem (3.2) (for
any �), and Eq. (3.3).

Solution (3.4), moreover, satisfies the limit conditions from (3.2)
as Ŷ± → +∞, and also the relations which connect the functions
p̂±, P̂1 and Â1 in (3,2). As regards the boundary conditions on the
solid surface around which the flow occurs, in accordance with
solution (3.4), to satisfy the impermeability conditions

(3.5)

it is necessary and sufficient to satisfy the following two equalities
simultaneously (choosing only the upper and only the lower signs)

(3.6)

The change from system (2.8) to system (3.3) leads to a loss of
the no-slip boundary condition

(3.7)

due to the reduction in the order of the system. If we consider
expressions (3.4) as the asymptotic form of the solution of system
(2.8) when � → +∞, then it is suitable everywhere, with the excep-
tion of thin sublayers (on the scale of the variables Ŷ±), adjacent to
the channel walls Ŷ± = 0. Hence, the wall subregions described by
Eq. (2.8) when � → +∞ are themselves split into non-viscous zones
Ŷ± = O(1) and viscous wall sublayers Ŷ± → 0. Since, in these wall
sublayers, the derivatives with respect to the vertical coordinate Ŷ±
are large, then, in the first equation of system (3.3), the term with

−7
the small parameter � must be retained as the coefficient. The
existence of wall sublayers enables us to satisfy the impermeability
condition (3.5) and the no-slip condition (3.7).

Summation of the two Eq. (3.6) eliminates the function P̂1 and
leads to a linearized Korteweg–de Vries equation

(3.8)

Subtracting Eq. (3.6), we obtain, after integration,

(3.9)

Although the equation for determining Â1 turned out to be
linear, the problem as a whole, as relation (3.9) shows, remains
non-linear.

The search for wave solutions of Eq. (3.8) in the form

establishes the dispersion relation
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which represents the principal part of the previously obtained14

spectral equality for the first mode of natural oscillations of a vis-
cous fluid.

By renormalizing the variables (3.1) and then taking the limit
as � → +∞, we can formulate the non-viscous problem within the
framework of the initial asymptotic Eq. (3.8) of the motion of a
viscous fluid. However, the new variables (3.1) enable us to propose
a different version of the construction of the theory of slightly non-
linear perturbations of Couette–Poiseuille flow at the stage of the
asymptotic expansions of the solution of the initial Navier–Stokes
equation. We will introduce the parameter

(3.10)

which we will assume to be small (although simultaneously
Re → ∞, � → +∞, but � → 0). The new version of the expansions
in asymptotic series can be obtained by interchanging the depen-
dent and independent variables in relations (2.1) and (2.6) using
formulae (3.1) and eliminating the parameter � in accordance with
equality (3.10): � = �1/2Re1/7.

Using the above discussions as our basis, instead of expansions
(2.6) we can consider the asymptotic series

(3.11)

We have as the arguments of the functions on the right-hand
sides

In the basic thickness of the channel, expansion (2.1) becomes

(3.12)

Introducing the representations (3.11) and (3.12) into the sys-
tem of Navier–Stokes equations, it can be shown that the result of
matching the wall layers with the core of the Couette–Poiseuille
flow leads to boundary-value problem (3.2), where the term with
the second derivative ∂2û±/∂Ŷ2± in the first equation of system (3.2)
must be dropped, since the parameter �−7 = �−7/2Re−1, which is
small by virtue of relation (3.10), occurs in it as a coefficient. Expres-
sions similar to (2.4) then remain in force, and the boundary-value

problem (3.2) is reduced to solving the Korteweg–de Vries equation
for a single unknown function Â1(T̂ , X̂).

4. Transformation of the initial perturbations into a wave
packet

After making the change of variables

the linearized Korteweg–de Vries Eq. (3.8) acquires the canonical
form

(4.1)

Suppose we set up the Cauchy problem for Eq. (4.1) with initial
condition

(4.2)

The symbols F[�] and F−1[�] will henceforth denote the direct
and inverse Fourier transformations with respect to the variable x.
ematics and Mechanics 72 (2008) 36–41 39

The classical Fourier transformations are defined as

(4.3)

We will use the concept of a generalized solution15 as one of the
possible forms of describing the properties of the solution of the
Cauchy problem. We will denote by E(t, x) the fundamental solution
of the Korteweg–de Vries operator, i.e. the generalized solution of
the equation

(4.4)

where �(t, x) is the Dirac delta function. The space of generalized
functions D′ consists of linear continuous functionals, denoted by
f(t, x), in the space of so-called fundamental functions �(t, x) from
the space D. The latter is a linear set of finite infinitely differen-
tiable functions. The result of the action of the functional f ∈D′ on
the fundamental function � ∈D is written as (f, �). The generalized
Fourier transformation F[f(t, x)](t, 	) in the space D′ is defined by
the equation

(4.5)

for any fundamental function � ∈D. On the right-hand side of Eq.
(4.5) we have the classical Fourier transformation (4.3), and on the
left-hand side we have the generalized Fourier transformation.

We will apply the generalized Fourier transformation with
respect to the variable x to Eq. (4.4). This leads to the ordinary
differential equation

the solution of which in the space of generalized functions D′ can
be expressed in terms of the Heaviside theta function 
(t)

(4.6)

The inverse Fourier transformation F−1[g(t, 	)] with respect to
the variable x in the space of generalized functions D′ is expressed
in terms of the direct Fourier transformation F[f(t, x)] as follows:
(4.7)

Calculating the inverse Fourier transformation of the general-
ized function (4.6) using formula (4.7), we obtain

(4.8)

The classical solution of the Cauchy problem (4.1), (4.2) is con-
tained among the generalized solutions of the problem

(4.9)

where the large dot denotes the direct product of generalized func-
tions. As is well known,15 the solution of generalized problem (4.9)
is given by the convolution of the fundamental solution (4.8) and
the generalized function on the right-hand side of Eq. (4.9)

(4.10)
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Fubini’s theorem on the change in the order of integration, as it
applies to integral (4.10), gives

(4.11)

The generalized solution of problem (4.9) in the upper half-
plane t > 0 is also the classical solution of the Cauchy problem. In
accordance with relation (4.11), the classical solution of problem
(4.1), (4.2) for t > 0 is given by the formula

(4.12)

where A∗
0(k) is the Fourier transform of the initial function A0(x)

from condition (4.2)

(4.13)

An asymptotic estimate of the integral (4.12) using the method
of steepest descent as t → +∞ indicates the formation of a wave
packet, propagating with a certain group velocity. We obtain the
structure of the wave packet by the method of steepest descent.

5. Construction of the oscillation pattern of the
perturbations by the method of steepest descent

We will consider the factor of the exponential function �(k) in
solution (4.12) as an analytic function of the complex variable k.
The stationary point (the point of steepest descent) is found from
the condition d�/dk = 0, i.e.

(5.1)

We will assume x/t = O(1), t → +∞. Using the fact that A∗
0(−k) =

A∗
0(k) for real A0(x), where the bar denotes complex-conjugate

quantities. The solution (4.12) can then be rewritten in the form

(5.2)
In the complex plane k, we will introduce the bundle of straight
lines

(5.3)

passing through k = k0. The straight line from the set (5.3) is distin-
guished by the parameter � and the position of the point on the
straight line is given by the distance � from the centre k = k0 of the
bundle.

The function �(k) at points of each straight line of the family
(5.3) has complex values

(5.4)

In accordance with the method of steepest descent we will
deform the contour of integration in the complex plane k in such
a way that it passes through the point of descent k = k0 (a saddle
point) in the direction of the quickest decrease in the modulus of
the exponential function in expression (5.2). It can be seen from
equality (5.4) that, in a small neighbourhood � → 0 of the saddle
point k = k0 of the analytic function � = �r + i�i, its real part �r,
hematics and Mechanics 72 (2008) 36–41

Fig. 2.

for each �, takes its negative minimum value on the straight line
� = 
/4. Hence, any section of this straight line containing the point
� = 0 is also a contour of steepest descent.

In integral (5.2), instead of the bundle (0, +∞) we will choose
the integration path C = C1 ∪ C2, consisting of the section C1 on the
imaginary axis and the bundle C2, which intersects the real axis at
the point k0 in the direction of most rapid descent (Fig. 2), i.e.

Integral (5.2) can be split into two integrals

We will assume that the function A (x) from condition (4.2)
0
is absolutely integrable, for example, finite. We then have for its
Fourier transform (4.13)

which leads to the inequalities

Consequently, �1 → 0 as t → +∞ with a rate of decrease of
O(t−1).

For an asymptotic estimate of �2 we will split the semi-infinite
path of integration L = [−

√
2 k0, +∞] into three parts

where we will assume the quantity � > 0 to be small but fixed
(� <

√
2 k0). The function �(k(�)) in the index of the exponential
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function in the integral �2, according to expression (5.4), has the
real part

which decreases monotonically on both sides from the point � = 0
of its maximum �r(k(0)) = 0, when � runs through the whole set L.
The maximum of �r(k(0)) in the subset L− ∪ L+ is reached at the
point � = −� at the right end of the section L−. Hence, the following
estimate holds

(5.5)

It shows that when t → +∞, apart from exponentially small
terms, it is sufficient to confine ourselves to integrating over L0,
namely,
(5.6)

Formula (5.6) is obtained using expression (5.4) for �(k(�)) and
making the substitution

We will first put t → +∞ for fixed �. Then the integral in Eq. (5.6)
changes into an improper Poisson integral equal to

√

. Taking the

limit as � → 0, we finally obtain

Hence, the asymptotic method of steepest descent when applied
to integral (4.12) as t → +∞ enables us to conclude that the initial
perturbation develops into a wave packet

(5.7)
ematics and Mechanics 72 (2008) 36–41 41

The group velocity of the wave packet is k2
0, where k0 =

x1/2(3t)−1/2. Expression (5.7) holds for xt−1 = O(1), t → +∞ and
describes the occurrence of high-frequency oscillations as time
passes and as one moves from the centre of the packet to its periph-
eral parts.
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